【V12460】Python3入门机器学习 经典算法与应用(力荐)

视频教程大纲

【课程内容】

第1章 欢迎来到 Python3 玩转机器学习

1-1 什么是机器学习
1-2 课程涵盖的内容和理念
1-3 课程所使用的主要技术栈

第2章 机器学习基础

2-1 机器学习世界的数据
2-2 机器学习的主要任务
2-3 监督学习,非监督学习,半监督学习和增强学习
2-4 批量学习,在线学习,参数学习和非参数学习
2-5 和机器学习相关的“哲学”思考
2-6 课程使用环境搭建

第3章 Jupyter Notebook, numpy和matplotlib

3-1 Jupyter Notebook基础
3-2 Jupyter Notebook中的魔法命令
3-3 Numpy数据基础
3-4 创建Numpy数组(和矩阵)
3-5 Numpy数组(和矩阵)的基本操作
3-6 Numpy数组(和矩阵)的合并与分割
3-7 Numpy中的矩阵运算
3-8 Numpy中的聚合运算
3-9 Numpy中的arg运算
3-10 Numpy中的比较和Fancy Indexing
3-11 Matplotlib数据可视化基础
3-12 数据加载和简单的数据探索

第4章 最基础的分类算法-k近邻算法 kNN

4-1 k近邻算法基础
4-2 scikit-learn中的机器学习算法封装
4-3 训练数据集,测试数据集
4-4 分类准确度
4-5 超参数
4-6 网格搜索与k近邻算法中更多超参数
4-7 数据归一化
4-8 scikit-learn中的Scaler
4-9 更多有关k近邻算法的思考

第5章 线性回归法

5-1 简单线性回归
5-2 最小二乘法
5-3 简单线性回归的实现
5-4 向量化
5-5 衡量线性回归法的指标:MSE,RMSE和MAE
5-6 最好的衡量线性回归法的指标:R Squared
5-7 多元线性回归和正规方程解
5-8 实现多元线性回归
5-9 使用scikit-learn解决回归问题
5-10 线性回归的可解释性和更多思考

第6章 梯度下降法

6-1 什么是梯度下降法
6-2 模拟实现梯度下降法
6-3 线性回归中的梯度下降法
6-4 实现线性回归中的梯度下降法
6-5 梯度下降法的向量化和数据标准化
6-6 随机梯度下降法
6-7 scikit-learn中的随机梯度下降法
6-8 如何确定梯度计算的准确性?调试梯度下降法
6-9 有关梯度下降法的更多深入讨论

第7章 PCA与梯度上升法

7-1 什么是PCA
7-2 使用梯度上升法求解PCA问题
7-3 求数据的主成分PCA
7-4 求数据的前n个主成分
7-5 高维数据映射为低维数据
7-6 scikit-learn中的PCA
7-7 试手MNIST数据集
7-8 使用PCA对数据进行降噪
7-9 人脸识别与特征脸

第8章 多项式回归与模型泛化

8-1 什么是多项式回归
8-2 scikit-learn中的多项式回归与Pipeline
8-3 过拟合与欠拟合
8-4 为什么要有训练数据集与测试数据集
8-5 学习曲线
8-6 验证数据集与交叉验证
8-7 偏差方差平衡
8-8 模型泛化与岭回归
8-9 LASSO
8-10 L1, L2和弹性网络

第9章 逻辑回归

9-1 什么是逻辑回归
9-2 逻辑回归的损失函数
9-3 逻辑回归损失函数的梯度
9-4 实现逻辑回归算法
9-5 决策边界
9-6 在逻辑回归中使用多项式特征
9-7 scikit-learn中的逻辑回归
9-8 OvR与OvO

第10章 评价分类结果

10-1 准确度的陷阱和混淆矩阵
10-2 精准率和召回率
10-3 实现混淆矩阵,精准率和召回率
10-4 F1 Score
10-5 精准率和召回率的平衡
10-6 精准率-召回率曲线
10-7 ROC曲线
10-8 多分类问题中的混淆矩阵

第11章 支撑向量机 SVM

11-1 什么是SVM
11-2 SVM背后的最优化问题
11-3 Soft Margin SVM
11-4 scikit-learn中的SVM
11-5 SVM中使用多项式特征和核函数
11-6 到底什么是核函数
11-7 RBF核函数
11-8 RBF核函数中的gamma
11-9 SVM思想解决回归问题

第12章 决策树

12-1 什么是决策树
12-2 信息熵
12-3 使用信息熵寻找最优划分
12-4 基尼系数
12-5 CART与决策树中的超参数
12-6 决策树解决回归问题
12-7 决策树的局限性

第13章 集成学习和随机森林

13-1 什么是集成学习
13-2 Soft Voting Classifier
13-3 Bagging 和 Pasting
13-4 oob (Out-of-Bag) 和关于Bagging的更多讨论
13-5 随机森林和 Extra-Trees
13-6 Ada Boosting 和 Gradient Boosting
13-7 Stacking

第14章 更多机器学习算法

14-1 学习scikit-learn文档, 大家加油!
14-2 学习完这个课程以后怎样继续深入机器学习的学习

百度网盘下载地址

资源下载价格9.8立即支付    升级VIP后免费升级VIP
有问题联系客服,教程不能播放100%退款。 资源很有可能被迫下架,原因您懂的,下载请趁早!
1、网军编程学院为非营利性网站,全站所有资料仅供网友个人学习使用,禁止商用。
2、本站所有文档、视频、书籍等资料均由网友分享,本站只负责收集不承担任何技术及版权问题。
3、如本帖侵犯到任何版权问题,请立即告知本站,本站将及时予与删除下载链接并致以最深的歉意。
4、本帖部分内容转载自其它媒体,但并不代表本站赞同其观点和对其真实性负责。
5、一经注册为本站会员,一律视为同意网站规定,本站管理员及版主有权禁止违规用户。
6、其他单位或个人使用、转载或引用本文时必须同时征得该帖子作者和网军编程学院的同意。
7、网军编程学院管理员和版主有权不事先通知发贴者而删除本文。

发表评论

发表评论

电子邮件地址不会被公开。